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Improved false nearest neighbor method to detect determinism in time series data
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The false nearest neighbor method introduced by Keanal. [Phys. Rev. A45, 3403(1992] is revisited
and modified in order to ensure a correct distinction between low-dimensional chaotic data and noise. Still,
correlated noise processes can yield vanishing percentages of false nearest neighbors for rather low embedding
dimensions and can be mistaken for deterministic signals. Therefore, the false nearest neighbors method has
always to be combined with a surrogate data %1063-651X99)08510-4

PACS numbdps): 05.45-a

The study of irregular time series data by means of nonwhole time series. The fraction of false nearest neighbors
linear analysis methods has become a popular task within thg@percentage FNNthen indicates whether the process is de-
last yeard1,2]. The main idea is that the aperiodicity in the terministic in m dimensions or not. lim is larger than the
data is not due to stochasticity but due to nonlinearity. Thenumber of active degrees of freedom this fraction should be
justification for this point of view is that simple nonlinear zero or at least very small, and nonzero otherwise. This
processes can give rise to very complex dynamical behaviomethod, which is also used to determine the minimal embed-
though the underlying process is purely deterministic andling dimension of scalar time series data, has gained popu-
might be quite low dimensional. The main visible differencelarity. However, as we shall show below, stochastic pro-
between a stochastic process and a nonlinear deterministi@sses can also yield a vanishing fraction of false nearest
process is that data from the latter are confined to a finiteneighbors for not too largm, when the method is used as a
dimensional manifold, whereas the former represents infiblack box with inappropriate parameter settings. We there-
nitely many degrees of freedom. Thus the most importanfore argue in favor of using a modified and more detailed
and apparently easiest test for determinism is a dimensionaleighbor statistics, to use only suitable embedding time lags
analysis. For this reason the correlation dimendgnintro-  also for stochastic data properly taking into account their
duced by Grassberger and Procadd@his one of the most linear correlations, and to complement each false nearest
often used methods in nonlinear time series analysis. Indeedgighbors plot by a plot for suitable surrogates.
this tool gives reasonable results if the combination of di- For a systematic approach we formulate the fraction of
mensionality of the process, the length of the time series, anthlse nearest neighbors in a probabilistic way. For analytical
the noise level of the data is propitious. Especially, underase, we will measure distances by the maximum norm, but
well controlled laboratory conditions it is sometimes possiblethere is no evidence that this is a restriction for the generality
to estimateD, to a good approximation. Certainly, the usual of our results. Assume that the distance between an
problem is that often either the dimensionality of the systenm-dimensional Vectopzn:(xn Xn 1y -« - ,Xn+m71)T and its

is too high to find a clear indication of a finite dimension o act neighboﬁ, is e. The conditional probability that

from a finite time series, or noise on the data destroys thg,ese points are false nearest neighbors, which means that
signature of determinism. Therefore, in most cases this dII-X X +m| > Se€, can be written as
n+m:s»r+m 3

mension estimate does not yield conclusive results at all.
Another method to determine the dimensionality of the
system is the false nearest neighbor method developed by
Kennel et al. [5]. The main idea is that for deterministic
systems, points which are close in tfreconstructedphase
space stay close under forward iteration. Translated into the
concept of time delay embedding for scalar time series data
[4], this statement is true if the dimension of the embedding
space is high enough to fully resolve the determinism. If, orPr as
the other hand, the dimension is too small, points may appear
as close neighbors purely by projection effects. Therefore, as
argued in[5], these points are mapped randomly onto the
whole attractor under forward iteration. Based on these ideas P([Xnsm Xy + ml >S€, [ Xn . X || = €)

the algorithm works as follows: Given a poir, in m di- Pr(s)= P([Xn. X =€)
mensions, look for its nearest neighb?;r. Let the distance

between these two points lee If the distance of the iterates
of these two points is larger thesg, wheres is ana priori

fixed value(to be discussed belowthenx, is marked as a If we suppose we had infinitely many points this can be
false nearest neighbai=NN). Repeat the procedure for the rewritten as

P¢(S)=P(|Xntm X +m|>S€ | ||)zn!)zr||:€)a 1)

2
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FIG. 1. Percentage of false nearest neighbors computed numerically for data from the Lorenz ordinary differential ¢@liadioras
function ofse *" for embedding dimensions=1 to 7, from top to bottom. The result depends on the timerlague to the sampling rate
of our datar=10 is most suitable.

fdxn-#mf dxH—mj d)zn/;(xn+ma)zn)j d;rﬂ(xr-%—ma)_()r)g(”inr)zr||_5)®(|xn+mixr+m|_Sf)

Pi(s) : 3

f d;nﬂ(;n)J' d)—EfILL()_()r) 5(||)_()n v>_()r|| —€)

where z(x) is the invariant measure iR™ %, u(x) is the  ding parameter which has gained much attention in the lit-
invariant measure irRm’ and @(X) is the Heaviside Step erature[ﬁ]. Also for the FNN statistics it is crucial for a
function. Equation(3) thus defines the average fraction of Sound detection of the correct dimension. Too short time lags
false nearest neighbors if the initial distance wasTo get ~€nhance correlations and give rise to delay vectors close to
the fraction of false nearest neighbors for pairs having arbithe diagonal, such that deviations transverse to it are badly
trary initial distance, one has to average over all values of unfolded. Too large lags lead to complicated geometry of the

Let us now consider a scalar time series of a deterministi¢€constructed attractor. Both mechanisms introduce a distor-
system. If the embedding dimensiom is chosen high tion of the FNN statisticfsee Fig. 1 The reasonably un-
enough to fully resolve the determinism, we can write thefolded attractor can be embedded in three dimensions apart
joined measure as from points of measure zero, a result which we find only for
7=10. For comparability we have normalizetb the expan-
sion factor exp{maxn)-

A nonzero percentage of FNN is found for the “correct”
= 5(xn(r)+m—f()?n(,))),u(in(,)), (4) m not only if sis too small compared to the lag but also

when the data are contaminated by measurement noise. Para-

wheren(r) means that the index is eitheor r. Thus we can  doxically, the effect of noise becomes the more severe the
perform the integration ovex, ., and the argument of the longer the time series is, since more data allow for smaller
function simply becomes nearest neighbor distances. One can therefore test for addi-
tive noise by varying the time series length used, although
this will yield a visible effect only when the supposed attrac-
tor dimension is small enough to also guarantee a consider-
which is negative ifs is larger than the largest local expan- able variation of the average nearest neighbor distance.
sion rate of the mafp. Hence, for deterministic systems we  The main question we want to raise is whether a very low
see a fraction zero of false nearest neighbors onlg i§  fraction of false nearest neighbors for someands is suf-
sufficiently large 6 was typically set to 10 if5]). If we ficient to characterize a system as being deterministic or even
chooses too small, false neighbors are found and we arenonlinear. The simplest nondeterministic system to deal with
unable to identify a deterministic system as such. Figure 1s pure white noise. In this case thein Eq. (3) factorizes
shows the fraction of false nearest neighbors for the Lorenand the false nearest neighbor fraction is given by
system as a function of. We argue against replacing the
study of the fulls dependence by a calculation for a single
fixed s value (which is done in most applications of the
method. The minimal reasonabkeis given by the maximum

of the local deterministic expansion rate, which can be muclFor uniformly distributed random numbers( %) = const for

larger thanema<, where\ .« is the maximal Lyapunov ex- 0<5<1 and zero otherwise; this is easily calculated to
ponent andr the time lag. The time lag between successive
measurements entering the delay vectors is a relevant embed-

/-L(Xn(r)+m vXn(r)) = /-L(Xn(r)+m|xn(r)):u(xn(r))

[£(Xn), F(X,)| —Se, (5)

Pf(s):f dnnﬂ(ﬂn)J' d 7, e ( 77r)®(|77na77r|_56)- (6)

Pi(s)=1—2se+s%€?, (7)
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and after averaging over a#, we have to replace and €?
by (€) and(€?), respectively.P(s) is unity if {€) is zero,
which is fulfilled only for an infinite time series. l.e., only an
infinite time series of white noise has 100% FNNs for arbi-
trary s. For finite time series length, P;(s) decreases for
increasingm, since the average interpoint distan@e be-
comes larger and larger. In particular, E@) yields zero for
e=1/s. For uncorrelated noisge)=1/NY" One thus needs
N=s™ points to get a nonzero result, or one cannot trust the
result form> InN/Ins. Of course, we already saw that we
cannot counterbalance too small Bnby decreasing too
much, since then we run into the problem that we cannot
identify a deterministic chaotic system as being determinis- 0
tic.

Summarizing, for(e)=1/s the fraction of false nearest _ _
neighbors is zero even for uncorrelated uniformly distributed FIG. 2. Percentage of false nearest neighbors for 20 000 uniform

random data. To avoid this bias, one needs a second reasd}{lite noise data fom=1 to 6 (from top to bottom. Our second

. . . . fcriterion(continuous curvefixes the percentage te 60%, whereas
ing for the nearest neighbor statistics. In the original work o o L . )

. . . the original criterion(on only 10 000 pointsleads to unsatisfactory
Kennel et al. [5] this was solved in the following way: If

results(broken curves For details see text.
VEM o(Xnsi—Xr+1)2>ARa, WhereR, is standard devia-
tion of the data and represents the attractor size, Agd implementation if we deal with colored noise. As an example
some factoftypically set to 2 in5]), thenx, is also counted Wwe consider an autoregressive process of ord@AR(2)]
as a false nearest neighbor, independently of the distance Bfocessa discretized noise driven damped oscilator
the images of the two points. This choice has two drawbacks:
First, for an insufficient amount of data, this criterion intro- Xn+1= (2= 0?=p)Xn+ (p=1)Xn-1+ 70, ®
duces false neighbors in large also for deterministic cha- . ) ) ) )
otic systems. Second, it underestimates the number of falsén€ré7n is white noise, and we fix =27/20, whereap is

neighbors for larges. Both aspects are a consequence of theVarled to show the influence of the correlation time.

fact that this criterion itself is not completely in the spirit of In Fig. 3 we see that, although the data stem from stochas-

. ) T . . tic processes, the false nearest neighbor fraction tends to zero
the false neighbor ideology: Pairs with too large distance are - rather small embedding dimensions, wheis small. The

not really false neighbors, but are just inappropriate candi- R(2) process has two time scales, one set by the oscillation
daFes t_o apply the ”?eth"d- We thus decide to d_isregard eriod, which we respected by a re:alsonable timerlaghen
points in the averaging procedu_re O_f Hd) fpr Wh'.Ch the the time lag of the time delay embedding is too small, one
distance towards its nearest neighlfor m dimension$ is  finys even fewer false nearest neighbpand the second set
larger than or equal to $times the standard deviation of the by the damping. The latter cannot be accounted for, even
data. For uniform and Gaussian distributed white noise, thi%hough the results are obtained using a kind of Theiler win-
leads to 50—-60% FNN for largg independent o andm. dow [9].
However, the number of points entering the average drops to When speaking of determinism in time series data, one
zero very fast for large. Simply settingA,,= 1/s cures the  usually implicitly accepts some small amount of measure-
second problem mentioned above, but not the first one.  ment noise. Dynamical noise, which interacts with the deter-
In Fig. 2, our implementation and the criterion [&] are
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compared for uniformly distributed white noise. The con- 100 ]
tinuous curves show the results of our numerics. The value
of (€) thus obtained was inserted in Eg), shown as dotted 80 | |
curves. One clearly observes statistical fluctuations due to .
poor statistics for larges and largem. The dashed curve f—)
shows the result for half of the data if we use the second 2 80 3
condition of Kennelet al. instead of ours. One clearly sees g Pt
that this condition gives many fewer false neighbors, and for Z‘i, 40 r 1
(large s)/(largem) the FNN percentage drops farther when e —— )
increasing the length of the time seriésg., with 20 000 20 e 1
points it is less than 5% fom=6). Notice that the lowest | 7 R
dashed curve correspondsrto=5, andm=6 lies above. 0

So we argue in favor of computing the percentage of FNN 1 2 3 4 5 6

for a large range of “falseness values; and to exclude all
points from the statistics whose closest neigbor is already to0 FIG. 3. Percentage of false nearest neighbors for colored noise
far away to have a chance to become false. This allows us terocesses at=8 (saturation region for these datdor damping
clearly distinguish between white noise and low-dimensionap=0.02 (lowest curve, p=0.05 (second from beloyy p=0.2, and
chaos. However, the situation becomes worse also for oys=0.5 (two uppermost curves
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FIG. 5. Part of the human ECG dateower trace and their
FIG. 4. Percentage of FNN for ECG data and their surrogates. surrogategupper tracg

ministic part of the dynamics, is equally likely to be present To summarize, the false nearest neighbor method is not
P y ’ qually y P -able to distinguish between deterministic and stochastic pro-

'?] almost allhexpenmental data. qumal(ljyi sucrg)a prpcessgéesses on an absolute level. If the correlation time of a sto-
then a stochastic process, since it is driven by noise. Thepastic process is large, the probability of identifying the
difference between such a process, which one could caiatg as a deterministic process is quite high. Only for white
noisy chaos, and the processes depicted by (&dis that  poise processes, i.e., uncorrelated random data, can about
noise is essential for the latter, since purely deterministiGgy, of false nearest neighbors be assured by the additional
solutions would be transients decaying to zero. Neverthelesgequirement introduced in this paper. In order to find inter-
we see that dinean deterministic rule is responsible for the yetaple results for other data, one has to choose a reasonable
correlations in data from these models, and it is therefore ngjy,e lag in the time delay embedding and to scan a whole
totally surprising that this determlnlstlc component leads to Fange ofs values. Together with the original data one should
suppression of false nearest neighbors. always study surrogate data, since it is otherwise hard to
To clarify this point, we show in Fig. 4 the percentage of yisiinguish linear correlations from nonlinear deterministic
FNN for human ECG data and their surrogeft#8,11. Sur-  ryjes.” Even then the insight might remain incomplete as
rogates are numerically generated data sets which contain glbmonstrated for ECG data. Let us finally stress that despite
the linear correlations and represent the correct marginal digs,r warning we think that the false nearest neighbor method
trlbutlon of the original dqta but are otherwise random. Theg seful to determine in an intuitively convincing way the
time lag for the FNN algor_lthm was chos_en such that the dat%mbedding parameters of a system of which one has good
are reasonably unfolded in two dimensions. We show a patiaason to assume that it is deterministic.
of the original and the surrogate time serigsrated ampli- All numerical results relying on our modified implemen-

tude adjusted Fourier transform surrogdtes)) in Fig. 5. As  tation of the false nearest neighbor method are obtained with
claimed above, the result is not very clear: ECG data anghe algorithm contained in thesean packet, which can be
surrogates have very similar FNN statistics, and the randomgawnioaded for freés].

ized data lose their false nearest neighbors for moderate em-

bedding dimensions. Although we do not claim that ECG R.H. wants to acknowledge the support of the European
data represent a deterministic process, the difference betweé&mion under Grant number FMRX-CT96-0010 and to thank
the ECG and its surrogates is so striking that the insensitivitgolleagues at the Istituto Nazionale di Otti¢dorence, Italy

of the false nearest neighbor method is somewhat worryingor their kind hospitality.
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