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Improved false nearest neighbor method to detect determinism in time series data

Rainer Hegger and Holger Kantz
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, 01187 Dresden, Germany

~Received 21 April 1999!

The false nearest neighbor method introduced by Kennelet al. @Phys. Rev. A45, 3403~1992!# is revisited
and modified in order to ensure a correct distinction between low-dimensional chaotic data and noise. Still,
correlated noise processes can yield vanishing percentages of false nearest neighbors for rather low embedding
dimensions and can be mistaken for deterministic signals. Therefore, the false nearest neighbors method has
always to be combined with a surrogate data test.@S1063-651X~99!08510-4#
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The study of irregular time series data by means of n
linear analysis methods has become a popular task within
last years@1,2#. The main idea is that the aperiodicity in th
data is not due to stochasticity but due to nonlinearity. T
justification for this point of view is that simple nonlinea
processes can give rise to very complex dynamical behav
though the underlying process is purely deterministic a
might be quite low dimensional. The main visible differen
between a stochastic process and a nonlinear determin
process is that data from the latter are confined to a fin
dimensional manifold, whereas the former represents i
nitely many degrees of freedom. Thus the most import
and apparently easiest test for determinism is a dimensi
analysis. For this reason the correlation dimensionD2 intro-
duced by Grassberger and Procaccia@3# is one of the most
often used methods in nonlinear time series analysis. Ind
this tool gives reasonable results if the combination of
mensionality of the process, the length of the time series,
the noise level of the data is propitious. Especially, un
well controlled laboratory conditions it is sometimes possi
to estimateD2 to a good approximation. Certainly, the usu
problem is that often either the dimensionality of the syst
is too high to find a clear indication of a finite dimensio
from a finite time series, or noise on the data destroys
signature of determinism. Therefore, in most cases this
mension estimate does not yield conclusive results at all

Another method to determine the dimensionality of t
system is the false nearest neighbor method develope
Kennel et al. @5#. The main idea is that for deterministi
systems, points which are close in the~reconstructed! phase
space stay close under forward iteration. Translated into
concept of time delay embedding for scalar time series d
@4#, this statement is true if the dimension of the embedd
space is high enough to fully resolve the determinism. If,
the other hand, the dimension is too small, points may app
as close neighbors purely by projection effects. Therefore
argued in@5#, these points are mapped randomly onto
whole attractor under forward iteration. Based on these id
the algorithm works as follows: Given a pointxWn in m di-
mensions, look for its nearest neighborxW r . Let the distance
between these two points bee. If the distance of the iterate
of these two points is larger thanse, wheres is ana priori

fixed value~to be discussed below!, thenxW r is marked as a
false nearest neighbor~FNN!. Repeat the procedure for th
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whole time series. The fraction of false nearest neighb
~percentage FNN! then indicates whether the process is d
terministic in m dimensions or not. Ifm is larger than the
number of active degrees of freedom this fraction should
zero or at least very small, and nonzero otherwise. T
method, which is also used to determine the minimal emb
ding dimension of scalar time series data, has gained po
larity. However, as we shall show below, stochastic p
cesses can also yield a vanishing fraction of false nea
neighbors for not too largem, when the method is used as
black box with inappropriate parameter settings. We the
fore argue in favor of using a modified and more detai
neighbor statistics, to use only suitable embedding time l
also for stochastic data properly taking into account th
linear correlations, and to complement each false nea
neighbors plot by a plot for suitable surrogates.

For a systematic approach we formulate the fraction
false nearest neighbors in a probabilistic way. For analyt
ease, we will measure distances by the maximum norm,
there is no evidence that this is a restriction for the genera
of our results. Assume that the distance between
m-dimensional vectorxWn5(xn ,xn11 , . . . ,xn1m21)† and its
nearest neighborxW r is e. The conditional probability that
these points are false nearest neighbors, which means
uxn1m ,xr 1mu.se, can be written as

Pf~s!5P~ uxn1m ,xr 1mu.se u ixWn ,xW r i5e!, ~1!

or as

Pf~s!5
P~ uxn1m ,xr 1mu.se,ixWn ,xW r i5e!

P~ ixWn ,xW r i5e!
. ~2!

If we suppose we had infinitely many points this can
rewritten as
4970 © 1999 The American Physical Society
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Pf~s!5

E dxn1mE dxr 1mE dxWnm̂~xn1m ,xWn!E dxW rm̂~xr 1m ,xW r !d~ ixWn ,xW r i2e!Q~ uxn1m ,xr 1mu2se!

E dxWnm~xWn!E dxW rm~xW r !d~ ixWn ,xW r i2e!

, ~3!

FIG. 1. Percentage of false nearest neighbors computed numerically for data from the Lorenz ordinary differential equations@7#, as a
function ofse2lt for embedding dimensionsm51 to 7, from top to bottom. The result depends on the time lagt. Due to the sampling rate
of our datat510 is most suitable.
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where m̂(x) is the invariant measure inRm11, m(x) is the
invariant measure inRm, and Q(x) is the Heaviside step
function. Equation~3! thus defines the average fraction
false nearest neighbors if the initial distance wase. To get
the fraction of false nearest neighbors for pairs having a
trary initial distance, one has to average over all values oe.

Let us now consider a scalar time series of a determini
system. If the embedding dimensionm is chosen high
enough to fully resolve the determinism, we can write t
joined measure as

m̂~xn(r )1m ,xWn(r )!5m̂~xn(r )1muxWn(r )!m~xWn(r )!

5d„xn(r )1m2 f ~xWn(r )!…m~xWn(r )!, ~4!

wheren(r ) means that the index is eithern or r. Thus we can
perform the integration overxn(r )1m and the argument of the
Q function simply becomes

u f ~xWn!, f ~xW r !u2se, ~5!

which is negative ifs is larger than the largest local expa
sion rate of the mapf. Hence, for deterministic systems w
see a fraction zero of false nearest neighbors only ifs is
sufficiently large (s was typically set to 10 in@5#!. If we
chooses too small, false neighbors are found and we a
unable to identify a deterministic system as such. Figur
shows the fraction of false nearest neighbors for the Lor
system as a function ofs. We argue against replacing th
study of the fulls dependence by a calculation for a sing
fixed s value ~which is done in most applications of th
method!. The minimal reasonables is given by the maximum
of the local deterministic expansion rate, which can be m
larger thanelmaxt, wherelmax is the maximal Lyapunov ex
ponent andt the time lag. The time lag between success
measurements entering the delay vectors is a relevant em
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ding parameter which has gained much attention in the
erature@6#. Also for the FNN statistics it is crucial for a
sound detection of the correct dimension. Too short time l
enhance correlations and give rise to delay vectors clos
the diagonal, such that deviations transverse to it are ba
unfolded. Too large lags lead to complicated geometry of
reconstructed attractor. Both mechanisms introduce a dis
tion of the FNN statistics~see Fig. 1!. The reasonably un-
folded attractor can be embedded in three dimensions a
from points of measure zero, a result which we find only
t.10. For comparability we have normalizeds to the expan-
sion factor exp(lmaxt).

A nonzero percentage of FNN is found for the ‘‘correc
m not only if s is too small compared to the lagt, but also
when the data are contaminated by measurement noise. P
doxically, the effect of noise becomes the more severe
longer the time series is, since more data allow for sma
nearest neighbor distances. One can therefore test for a
tive noise by varying the time series length used, althou
this will yield a visible effect only when the supposed attra
tor dimension is small enough to also guarantee a consi
able variation of the average nearest neighbor distance.

The main question we want to raise is whether a very l
fraction of false nearest neighbors for somem ands is suf-
ficient to characterize a system as being deterministic or e
nonlinear. The simplest nondeterministic system to deal w
is pure white noise. In this case them in Eq. ~3! factorizes
and the false nearest neighbor fraction is given by

Pf~s!5E dhnm~hn!E dh rm~h r !Q~ uhn ,h r u2se!. ~6!

For uniformly distributed random numbersm(h)5const for
0<h<1 and zero otherwise; this is easily calculated to

Pf~s!5122se1s2e2, ~7!
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and after averaging over alle, we have to replacee ande2

by ^e& and ^e2&, respectively.Pf(s) is unity if ^e& is zero,
which is fulfilled only for an infinite time series. I.e., only a
infinite time series of white noise has 100% FNNs for ar
trary s. For finite time series lengthN, Pf(s) decreases for
increasingm, since the average interpoint distance^e& be-
comes larger and larger. In particular, Eq.~7! yields zero for
e51/s. For uncorrelated noisêe&.1/N1/m. One thus needs
N>sm points to get a nonzero result, or one cannot trust
result for m. ln N/ln s. Of course, we already saw that w
cannot counterbalance too small anN by decreasings too
much, since then we run into the problem that we can
identify a deterministic chaotic system as being determin
tic.

Summarizing, for^e&51/s the fraction of false neares
neighbors is zero even for uncorrelated uniformly distribu
random data. To avoid this bias, one needs a second rea
ing for the nearest neighbor statistics. In the original work
Kennel et al. @5# this was solved in the following way: I
A( i 50

m (xn1 i2xr 1 i)
2.AtolRA , whereRA is standard devia-

tion of the data and represents the attractor size, andAtol

some factor~typically set to 2 in@5#!, thenxW r is also counted
as a false nearest neighbor, independently of the distanc
the images of the two points. This choice has two drawbac
First, for an insufficient amount of data, this criterion intr
duces false neighbors in largem also for deterministic cha
otic systems. Second, it underestimates the number of f
neighbors for larges. Both aspects are a consequence of
fact that this criterion itself is not completely in the spirit
the false neighbor ideology: Pairs with too large distance
not really false neighbors, but are just inappropriate can
dates to apply the method. We thus decide to disregard
points in the averaging procedure of Eq.~1! for which the
distance towards its nearest neighbor~in m dimensions! is
larger than or equal to 1/s times the standard deviation of th
data. For uniform and Gaussian distributed white noise,
leads to 50–60% FNN for larges, independent ofs andm.
However, the number of points entering the average drop
zero very fast for larges. Simply settingAtol51/s cures the
second problem mentioned above, but not the first one.

In Fig. 2, our implementation and the criterion of@5# are
compared for uniformly distributed white noise. The co
tinuous curves show the results of our numerics. The va
of ^e& thus obtained was inserted in Eq.~7!, shown as dotted
curves. One clearly observes statistical fluctuations due
poor statistics for larges and largem. The dashed curve
shows the result for half of the data if we use the seco
condition of Kennelet al. instead of ours. One clearly see
that this condition gives many fewer false neighbors, and
~large s)/~large m) the FNN percentage drops farther wh
increasing the length of the time series~e.g., with 20 000
points it is less than 5% form56). Notice that the lowes
dashed curve corresponds tom55, andm56 lies above.

So we argue in favor of computing the percentage of F
for a large range of ‘‘falseness values’’s, and to exclude all
points from the statistics whose closest neigbor is already
far away to have a chance to become false. This allows u
clearly distinguish between white noise and low-dimensio
chaos. However, the situation becomes worse also for
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implementation if we deal with colored noise. As an exam
we consider an autoregressive process of order 2@AR~2!#
process~a discretized noise driven damped oscilator!

xn115~22v22r!xn1~r21!xn211hn , ~8!

wherehn is white noise, and we fixv52p/20, whereasr is
varied to show the influence of the correlation time.

In Fig. 3 we see that, although the data stem from stoch
tic processes, the false nearest neighbor fraction tends to
for rather small embedding dimensions, whenr is small. The
AR~2! process has two time scales, one set by the oscilla
period, which we respected by a reasonable time lagt ~when
the time lag of the time delay embedding is too small, o
finds even fewer false nearest neighbors!, and the second se
by the damping. The latter cannot be accounted for, e
though the results are obtained using a kind of Theiler w
dow @9#.

When speaking of determinism in time series data, o
usually implicitly accepts some small amount of measu
ment noise. Dynamical noise, which interacts with the de

FIG. 2. Percentage of false nearest neighbors for 20 000 unif
white noise data form51 to 6 ~from top to bottom!. Our second
criterion~continuous curve! fixes the percentage to'60%, whereas
the original criterion~on only 10 000 points! leads to unsatisfactory
results~broken curves!. For details see text.

FIG. 3. Percentage of false nearest neighbors for colored n
processes ats58 ~saturation region for these data!, for damping
r50.02 ~lowest curve!, r50.05 ~second from below!, r50.2, and
r50.5 ~two uppermost curves!.
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ministic part of the dynamics, is equally likely to be prese
in almost all experimental data. Formally, such a proces
then a stochastic process, since it is driven by noise.
difference between such a process, which one could
noisy chaos, and the processes depicted by Eq.~8! is that
noise is essential for the latter, since purely determini
solutions would be transients decaying to zero. Neverthel
we see that a~linear! deterministic rule is responsible for th
correlations in data from these models, and it is therefore
totally surprising that this deterministic component leads t
suppression of false nearest neighbors.

To clarify this point, we show in Fig. 4 the percentage
FNN for human ECG data and their surrogates@10,11#. Sur-
rogates are numerically generated data sets which conta
the linear correlations and represent the correct marginal
tribution of the original data but are otherwise random. T
time lag for the FNN algorithm was chosen such that the d
are reasonably unfolded in two dimensions. We show a
of the original and the surrogate time series~iterated ampli-
tude adjusted Fourier transform surrogates@11#! in Fig. 5. As
claimed above, the result is not very clear: ECG data
surrogates have very similar FNN statistics, and the rand
ized data lose their false nearest neighbors for moderate
bedding dimensions. Although we do not claim that EC
data represent a deterministic process, the difference betw
the ECG and its surrogates is so striking that the insensiti
of the false nearest neighbor method is somewhat worry

FIG. 4. Percentage of FNN for ECG data and their surrogate
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To summarize, the false nearest neighbor method is
able to distinguish between deterministic and stochastic p
cesses on an absolute level. If the correlation time of a
chastic process is large, the probability of identifying t
data as a deterministic process is quite high. Only for wh
noise processes, i.e., uncorrelated random data, can a
50% of false nearest neighbors be assured by the additi
requirement introduced in this paper. In order to find int
pretable results for other data, one has to choose a reaso
time lag in the time delay embedding and to scan a wh
range ofs values. Together with the original data one shou
always study surrogate data, since it is otherwise hard
distinguish linear correlations from nonlinear determinis
rules. Even then the insight might remain incomplete
demonstrated for ECG data. Let us finally stress that des
our warning we think that the false nearest neighbor met
is useful to determine in an intuitively convincing way th
embedding parameters of a system of which one has g
reason to assume that it is deterministic.

All numerical results relying on our modified implemen
tation of the false nearest neighbor method are obtained
the algorithm contained in theTISEAN packet, which can be
downloaded for free@8#.

R.H. wants to acknowledge the support of the Europe
Union under Grant number FMRX-CT96-0010 and to tha
colleagues at the Istituto Nazionale di Ottica~Florence, Italy!
for their kind hospitality.

FIG. 5. Part of the human ECG data~lower trace! and their
surrogates~upper trace!.
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